wrapped-up normal distribution - significado y definición. Qué es wrapped-up normal distribution
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es wrapped-up normal distribution - definición

CONTINUOUS PROBABILITY DISTRIBUTION ON THE CIRCLE
Circular normal distribution; Mises distribution; Tikhonov distribution; Normal circular distribution
  • Plot of the von Mises CMF
  • Plot of the von Mises PMF

Wrapped normal distribution         
  • Plot of the von Mises CMF
WRAPPED PROBABILITY DISTRIBUTION THAT RESULTS FROM THE "WRAPPING" OF THE NORMAL DISTRIBUTION AROUND THE UNIT CIRCLE
Wrapped normal; Wrapped Normal Distribution; Wrapped gaussian
In probability theory and directional statistics, a wrapped normal distribution is a wrapped probability distribution that results from the "wrapping" of the normal distribution around the unit circle. It finds application in the theory of Brownian motion and is a solution to the heat equation for periodic boundary conditions.
Split normal distribution         
Split Normal Distribution
In probability theory and statistics, the split normal distribution also known as the two-piece normal distribution results from joining at the mode the corresponding halves of two normal distributions with the same mode but different variances. It is claimed by Johnson et al.
Multivariate normal distribution         
  • Left: Classification of seven multivariate normal classes. Coloured ellipses are 1 sd error ellipses. Black marks the boundaries between the classification regions. <math>p_e</math> is the probability of total classification error. Right: the error matrix. <math>p_{ij}</math> is the probability of classifying a sample from normal <math>i</math> as <math>j</math>. These are computed by the numerical method of ray-tracing <ref name="Das" /> ([https://www.mathworks.com/matlabcentral/fileexchange/84973-integrate-and-classify-normal-distributions Matlab code]).
  • Bivariate normal distribution centered at <math>(1, 3)</math> with a standard deviation of 3 in roughly the <math>(0.878, 0.478)</math> direction and of&nbsp;1 in the orthogonal direction.
  • joint density]]
  • Top: the probability of a bivariate normal in the domain <math>x\sin y-y\cos x>1</math> (blue regions). Middle: the probability of a trivariate normal in a toroidal domain. Bottom: converging Monte-Carlo integral of the probability of a 4-variate normal in the 4d regular polyhedral domain defined by <math>\sum_{i=1}^4 \vert x_i \vert < 1</math>. These are all computed by the numerical method of ray-tracing. <ref name="Das"></ref>
  • '''a:''' Probability density of a function <math>\cos x^2</math> of a single normal variable <math>x</math> with <math>\mu=-2</math> and <math>\sigma=3</math>. '''b:''' Probability density of a function <math>x^y</math> of a normal vector <math>(x, y)</math>, with mean <math>\boldsymbol{\mu}=(1, 2)</math>, and covariance
<math>\mathbf{\Sigma} = \begin{bmatrix}
.01 & .016 \\
.016 & .04
\end{bmatrix}</math>. '''c:''' Heat map of the joint probability density of two functions of a normal vector <math>(x, y)</math>, with mean <math>\boldsymbol{\mu}=(-2, 5)</math>, and covariance
<math>\mathbf{\Sigma} = \begin{bmatrix}
10 & -7 \\
-7 & 10
\end{bmatrix}</math>. '''d:''' Probability density of a function <math>\sum_{i=1}^4 \vert x_i \vert</math> of 4 iid standard normal variables. These are computed by the numerical method of ray-tracing. <ref name="Das" />
GENERALIZATION OF THE ONE-DIMENSIONAL NORMAL DISTRIBUTION TO HIGHER DIMENSIONS
Multivariate gaussian distribution; Multivariate Gaussian distribution; Multivariate normal; Multivariate Gaussian; Bivariate Gaussian distribution; MVN; Bivariate normal distribution; Joint normality; Jointly normal; Jointly Gaussian; Jointly gaussian; Multivariate Gaussian random variable; Multinormal distribution; Jointly normally distributed; Bivariate normal; Gaussian discriminant analysis; Normal random vector; Multinormal; Multivariate normal random variable; Mardia's test; BHEP test; Gaussian random vector; Joint normal distribution; Multidimensional normal distribution; Friedman Rafsky Test; Multivariate Gaussian vector
\, \exp ( -\frac{1}{2}(\mathbf{x} - \boldsymbol\mu)^} \boldsymbol\Sigma^{-1}(\mathbf{x} - \boldsymbol\mu) ),exists only when Σ is positive-definite

Wikipedia

Von Mises distribution

In probability theory and directional statistics, the von Mises distribution (also known as the circular normal distribution or Tikhonov distribution) is a continuous probability distribution on the circle. It is a close approximation to the wrapped normal distribution, which is the circular analogue of the normal distribution. A freely diffusing angle θ {\displaystyle \theta } on a circle is a wrapped normally distributed random variable with an unwrapped variance that grows linearly in time. On the other hand, the von Mises distribution is the stationary distribution of a drift and diffusion process on the circle in a harmonic potential, i.e. with a preferred orientation. The von Mises distribution is the maximum entropy distribution for circular data when the real and imaginary parts of the first circular moment are specified. The von Mises distribution is a special case of the von Mises–Fisher distribution on the N-dimensional sphere.